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Abstract

Class incremental semantic segmentation aims to strike
a balance between the model’s stability and plasticity by
maintaining old knowledge while adapting to new concepts.
However, most state-of-the-art methods use the freeze strat-
egy for stability, which compromises the model’s plastic-
ity. In contrast, releasing parameter training for plasticity
could lead to the best performance for all categories, but
this requires discriminative feature representation. There-
fore, we prioritize the model’s plasticity and propose the
Contrast inter- and intra-class representations for Incremen-
tal Segmentation (CoinSeg), which pursues discriminative
representations for flexible parameter tuning. Inspired by the
Gaussian mixture model that samples from a mixture of Gaus-
sian distributions, CoinSeg emphasizes intra-class diversity
with multiple contrastive representation centroids. Specifi-
cally, we use mask proposals to identify regions with strong
objectness that are likely to be diverse instances/centroids
of a category. These mask proposals are then used for
contrastive representations to reinforce intra-class diver-
sity. Meanwhile, to avoid bias from intra-class diversity, we
also apply category-level pseudo-labels to enhance category-
level consistency and inter-category diversity. Additionally,
CoinSeg ensures the model’s stability and alleviates forget-
ting through a specific flexible tuning strategy. We validate
CoinSeg on Pascal VOC 2012 and ADE20K datasets with
multiple incremental scenarios and achieve superior results
compared to previous state-of-the-art methods, especially in
more challenging and realistic long-term scenarios. Code is
available at hitps://github.com/zkzhang98/CoinSeg.

*Work done during an intern at WEI Lab of Beijing Jiaotong University.
Corresponding author. guangyugao@bit.edu.cn.
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Figure 1. Comparison of Simple Prototype Modeling and Multiple
Distribution Modeling. (a): Simple prototype modeling to repre-
sent a category with global average pooling; (b): Multiple Gussian
distribution modeling to represent a category with its regional ob-
jectness, which is discovered with the guidance of mask proposals.

1. Introduction

In recent years, deep learning based methods have
achieved satisfactory performance on various recognition
tasks, with the assumption of fixed or stable data distribu-
tion [ | 7]. However, real-world data is typically a continuous
stream with an unstable distribution, making it difficult for
models to retain old knowledge while acquiring new con-
cepts, known as catastrophic forgetting [, 24, 30]. To tackle
this problem, incremental learning is proposed to adapt to
changing data streams for new concepts, but also avoid for-
getting old knowledge, especially for the classification task,
i.e., Class-Incremental Learning (CIL) [16, 18, 46].

Class Incremental Semantic Segmentation(CISS) aims to
assign an image with the pixel-wise label of the CIL setting.
In semantic segmentation tasks involving dense predictions,
the problem of catastrophic forgetting typically becomes
more challenging. Most recent works [+, 5, | 7] have strug-
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gled to alleviate this problem, and the freeze strategy [°] (i.e.,
freezing most of the parameters during all the incremental
steps after learning base classes) was shown to be the most
efficient way in the state-of-the-art CISS methods [5, 49].

However, while the freeze strategy effectively alleviates
catastrophic forgetting, it is a compromise for the model’s
plasticity, meaning the model becomes hard to adapt to new
classes. Furthermore, when considering the lifelong learning
setting with an infinite number of novel classes, the plasticity
of the incremental learner will be crucial. Therefore, ideally,
the optimal solution should be fine-tuning all the parameters
for new classes, while catastrophic forgetting needs to be
handled properly, rather than a freeze strategy.

Thus, to address the above-mentioned issues in CISS,
especially the limitations of the freeze strategy, we prioritize
the model’s plasticity by a flexible parameters tuning strategy,
and pursue the more discriminative feature representation for
the balance to stability. An intuitive idea for discriminative
representation is to compute prototypes (category centroids)
for each category and apply contrastive learning to improve
the diversity among categories [20, 4]. However, as men-
tioned in the Gaussian Mixture Model (GMM) [37], the
natural samples from the same category should come from
the mixture of multiple Gaussian distributions. Furthermore,
several prior works [2&, 29, 33, 43] have also claimed that
the representation of categories in the feature space should
be multiple activations, as shown in Fig. 1.

To this end, we propose the Contrast inter- and intra-class
representations for Incremental Segmentation (CoinSeg),
by pursuing discriminative representations. Although the
idea of adapting contrastive learning to CISS is intuitive,
it is worth studying and critical to choose the appropriate
areas, to contrast inter- and intra-class representations for
incremental segmentation. Firstly, the CoinSeg emphasizes
intra-class diversity with multiple contrastive representation
centroids. Specifically, we identify regions with strong ob-
jectness using mask proposals, which are more likely to
be instances/centroids of a particular category, as shown in
Fig. 1 (b). We contrast these regional objectness to rein-
force intra-class diversity and robust representation of the
model. In order to mitigate the potential bias from intra-class
diversity, we incorporated category-level pseudo-labels to
augment category-level consistency and inter-category diver-
sity. Meanwhile, we apply Swin Transformer [ V] to better
extract the local representation of the samples. Addition-
ally, CoinSeg ensures the model’s stability and alleviates
forgetting through a specific Flexible Tuning strategy. In this
strategy, a better balance between plasticity and stability is
achieved by designing an initial learning rate schedule and
regularization terms.

Finally, the CoinSeg outperforms prior methods in multi-
ple benchmarks, especially in realistic and hard long-term
scenarios VOC 10-1 and 2-2, where our approaches show sig-

nificant performance gains of 6.7% and 17.8%, comparing
with previous state-of-the-art, respectively.

2. Related work
2.1. Class Incremental Learning

Class incremental learning (CIL) is incremental learn-
ing focusing on defying catastrophic forgetting in classifi-
cation tasks. Replay-based approaches were proposed to
store a sampler of historical data [10, 20, 32, 34, 58], which
can be used for future training to prevent forgetting. The
historical data can also be obtained with web search en-
gine [23] or generation models [27, 39, 41]. Another in-
tuitive thought to tackle CIL task is based on parameter
isolation [2, 22, 35, 306, 37, 46]. Parameter isolation meth-
ods assign dedicated model parameters for each specific
task, while bringing the continually increasing number of
parameters with task increases. Regularization-based meth-
ods, such as knowledge distillation [1, 15, 16, 51, 14] and
restricting model training with networks trained at previous
tasks [1&, 21, 47], are also effective in tackling the catas-
trophic forgetting problem in incremental learning. These
methods allow the model to transfer knowledge from previ-
ous tasks to new tasks, which can help prevent forgetting.

2.2. Class Incremental Semantic Segmentation

Recently, there is a growing interest in the field of incre-
mental learning for semantic segmentation(i.e., Class incre-
mental semantic segmentation, CISS), and researchers are
proposing various approaches to tackle CISS. Modeling-
the-Background (MiB) [4] first remodeling the back-
ground (dummy label) in the ground truth, and designs a
distillation-based framework in CISS. Douillard et al. [ 7]
proposed the approach of PLOP to define a pseudo label for
CISS and proposes a local distillation method as an extended
constraint based on MiB. The SSUL [5] first introduces
replay-based approaches to the CISS task and maintains a
memory bank of historical samples for future model train-
ing. Besides, the SSUL prevents the model from forgetting
by freezing model parameters. RCIL [+ 5] proposes a dual-
branch architecture, in which one is freeze and the other is
trainable, and introduces a channel-wise feature distillation
loss. MicroSeg [49] introduces mask proposals to CISS and
further clarifies image labels to tackle background shifts.

2.3. Vision Transformer

Transformers for computer vision (i.e., Vision Trans-
former) have attracted more and more attention. ViT [ 1] is
the first widely known vision transformer, which transposes
transformer directly to image classification tasks, achieving
comparable performances with CNN-based methods. Since
then, researchers have explored modifications and optimiza-
tions to ViT, proposing numerous designs [, (] for Vision



Transformers that differ from those used in NLP. Swin Trans-
former [19] proposes shifted window-based self-attention,
bringing greater efficiency for vision transformer. Other
works have explored the use of transformers for image seg-
mentation. Segformer [+”] consists of hierarchically struc-
tured transformer layers to deal with semantic segmentation.
Mask2Former [/] and MaskFormer [£] propose universal
transformer-based architectures for semantic, instance and
panoptic segmentation.

3. Method
3.1. Task Definition

We define the task of Class Incremental Semantic Seg-
mentation (CISS) according to the common definition in
previous works [4, 5, 12, 26, 45]. CISS is composed of a
series of incremental learning steps,ast = 1,...,T. Each
learning step has a sub-dataset D" and a corresponding class
set of samples C’. For any pair (x!, y*) within D*, 2! and
y! denote the input image and its ground-truth mask, re-
spectively. We follow the definition of classes set learned
in CISS as in MicroSeg [+9]: In each learning step of class
incremental semantic segmentation, the current classes set
can be represented as the union of the classes to be learned,
denoted by C*, and a special class ¢, denotes “areas does not
belong to current foreground classes”. From the perspective
of each current learning step, the class ¢, can be interpreted
as the background class, and its composition varies across
different learning steps.

The goal of the CISS model f; ¢ with parameters 8 at the
ty1, learning step is to assign a probability to each class for
every pixel in z’. The CISS model f; g is a composite of a
feature extractor g; ¢, and a classifier h; g,, which classifies
each category in the union of C'* = U§:1 C' and the unseen
class ¢, (i.e., Ct = C** U c,). After the ¢-th learning step,
the model also needs to provide a prediction for all seen
classes Ct. The prediction of CISS with model ft.6 can be
expressed as gy = arg maxccct ff ().

3.2. Contrast inter- and intra-class Representations

Previous studies [5, 49] have highlighted the advantages
of the freeze strategy in CISS. However, while parameter
freezing can be beneficial, it may also restrict the model’s
plasticity and block further exploration of CISS. Unlike pre-
vious methods, our approach prioritizes model plasticity and
allows fine-tuning to address this concern. With the applica-
tion of fine-tuning, it is possible to train the model to obtain
more robust and discriminative representations. Thus, we
designed two contrastive losses for enhancing the ability of
model representation learning to improve the model plas-
ticity, i.e., pseudo label-guided representation learning for
inter-class diversity and mask proposal-guided representa-
tion learning for intra-class diversity, as depicted in Fig. 2.

Inter-class Diversity

<=-=> Intra-class Diversity

Figure 2. Illustration of the inter- & intra-class diversity. Only the
contrastive learning with class “bird” is shown for example.

3.2.1 Contrast inter-class representations

We apply pseudo-label-guided representation learning to
enhance inter-class diversity. The approach also highlights
category-level consistency to avoid bias from intra-class
diversity, which introduces in Sec. 3.2.2.

Pseudo labels. Due to the limitation of data acquisition
in CISS, the current ground truth ¢! is only annotated with
classes at the current learning step, i.e., Ct. So we need to
extend the available ground truth y* to include predictions
from f;_1, creating a more informative label for contrastive
learning. Specifically, we get the label prediction §'~1 €
RICT T 0eu X HXW ith the inference of f,_1(x) and the
confidence s~ € R¥*W of prediction. Formally:

~t—1
g =arg max fi—1(z),

_ ey
70 = max o(fi-i(®)),
where o(-) denotes Sigmoid function. With the ground truth
mask y* = {y!} in current step, we mix the supervision
label g! of pixel i according to the following rules:

t
-t _ )Y
Y, = {Qfl

where threshold 7 = 0.7, ‘A’ represents the co-taking of
conditions.

where y! € C'ory! =c, Asi™t <71 @)
)

where y! = c, AsiTt > 7

Inter-class contrastive loss. With the guidance of pseudo
label, CoinSeg gets the prototypes of classes (i.e., class
centroids), and sets up contrastive loss to better represent
inter-class diversity.

Given the feature maps M* = g;(z) and binary masks
gt € {0, 1} 1xhxw from the pseudo labels, CoinSeg ap-
plies masked average pooling (MAP) [“Z] to obtain proto-
types of each foreground class as P, , for contrast inter-class
representation:
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Figure 3. The pipeline of contrastive learning.
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We abbreviate the operation as P!, = MAP(M?*,g").
P}, is a series of vectors as prototypes, i.e., discriminative
representation of each classes. At learning step ¢ > 1, Coin-
Seg adapts model f;_; from learning step ¢ — 1 as guidance
to train the current model f;, and we note M‘~! = g;_;(x).
P!-! can also be obtained with feature maps of previous
step M1 through a similar operation. CoinSeg assigns
prototypes clustered from the same pseudo label as positive
pairs in contrastive learning, and prototypes from different
labels as negative pairs.

The distance of prototypes is measured with the inner
product Dot(-, -), and the contrastive loss with the guidance

of the pseudo label can be expressed as:

P}, = MAP(M' g") = 3)

K S

L. . = 7i 1 eXp(DOt(‘PZt;LZfM PitTLth)) (4)
int = KZ 08 oK Dot(PY. Py
i=1 Zj:l,j;éi exp(Dot (P, P))

where P}, = P}, U P/, K = |P} | is the number of

inter-class prototypes, thus 2K = | P} ,| 4+ |P}'| . Gener-
ally, as shown in Fig. 3, we abbreviate the contrastive loss

by previous operations with the guidance of mask 4! as:

Lins = CON(g', M*, M'™1). (35)

3.2.2 Contrast intra-class representations

Inspired by the Gaussian mixture models, we focus on intra-
class diversity benefits to more robust representation learn-
ing. Thus we mine potential regional objectness within
categories, and emphasize intra-class diversity through mask
proposals-guided representation learning.

Mask proposals. CoinSeg adapts a set of class-agnostic
binary mask B € {0, 1}V*#*W a5 proposals (i.e., mask
proposals), where [N denotes the number of mask proposals.
Following the practice of [+Y], mask proposals are generated
with Mask2Former [7]. Note each pixel in an image belongs
and only belongs to one of the mask proposals.

Intra-class contrastive loss. Mask proposals discover re-
gional objectness in images, which are likely to be diverse
instances or centroids of a category, and benefit the con-
struction of intra-class contrastive learning. For M! =
g:(x), CoinSeg obtains prototypes of each mask proposal
by P, = MAP(M', B). Namely, P}, is a series of
mask proposal-based prototypes with size of N x C. Pitt;l
can also be obtained with the similar operation. To better
characterize the intra-class diversity by contrastive learning,
CoinSeg assigns prototypes from the same mask proposal as
positive pairs, and prototypes from different mask proposals
as negative pairs. The contrastive loss with the guidance of

mask proposals can be expressed as:

Litr = CON(B, M, M'™1)

- XN: log exp(Dot(Py, P ) (6)
N 2N K3 7\
N i=1 Zj:l,j;éi exp(DOt(Piifﬂ P7))

3.2.3 Summary

As explained in Sec. 3.1, due to the incremental learning task,
there is a limitation in the acquisition of category labels in
the ground truth, which leads to the fact that it is difficult for
the CISS model to distinguish between categories. To this
end, we enhance the model’s category discrimination ability
by emphasizing inter- and intra-class diversity. Moreover,
contrastive learning overcomes catastrophic forgetting by
the design of positive contrast pairs, i.e., constraining the
corresponding prototypes from feature map M* and M'~!
to be consistent. This knowledge distillation-like mechanism
helps to alleviate forgetting and improve performance in
CISS.

Finally, the total loss for the learning of the Contrast inter-
and intra-class Representations is:

Ect = ['int + [’itr' (7)
3.3. Flexible Tuning Strategy

As mentioned before, releasing parameter training for
plasticity could lead to the best performance, but more dis-
criminative feature representation is needed. Although we
have designed the Contrast inter- and intra-class Representa-
tions for the discriminative representation, some more spe-
cific parameter tuning strategy is necessary to ensure stabil-
ity (i.e., handling catastrophic forgetting) as well. Therefore,
we introduce the Flexible Tuning (FT) strategy as that, which
allows for training the model while mitigating the effects of
forgetting, achieving a balance between stability and plas-
ticity. Fig. 4 shows the comparison of the freeze strategy
and flexible tuning strategy. The freeze strategy involves
keeping the parameters of the feature extractor and classi-
fier for historical classes fixed for learning step ¢ > 1. In
contrast, the flexible tuning strategy uses a lower learning
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Figure 4. Comparison of Freeze and Flexible Tuning strategy for
learning step ¢t > 1. Best viewed in color.

rate and regularization constraints to allow for more flexible
adjustments of these parameters.

Flexible initial learning rate. The segmentation model
fo is represented with a feature extractor gg, and a classifier
he,, with parameters set 6; and 0y accordingly. Unlike
the freeze strategy [°], which sets the learning rate to zero
for both 6; and 0, of historical classes, the FT strategy
applies a initial learning rate schedule of each learning step
to these parameters. Specifically, during the first learning
step (t = 1), the initial learning rate {r will be kept as
original [ry. For subsequent learning steps (t > 1), the
initial learning rate is gradually reduced to better preserve
the knowledge of the historical categories. So the initial I
of step ¢ is expressed as:

i Lo ift=1 ®
ety g ift>17

where ), is a hyper-parameter, and e~
nential decay of the learning rate.

refers to the expo-

Regularization constraints. When the flexible learning
schedule allows the model to adapt more to new concepts,
regularization constraints for mitigating forgetting become
even more crucial than before. To better alleviate forgetting
and ensure stability when the model adapts to new cate-
gories, CoinSeg applies some regularization constraints. To
be more specific, for a sample x, CoinSeg extract feature
map M1 € REXH'*W' by the feature extractor g;_1. i.e.,
M1 = g, 4(x), and C denotes the number of channels of
M;_4. Similarly, M* = g,(x). Then, CoinSeg constrains
the consistency of M* and M*~! with the Mean Square

Error (MSE) as:

LE =MSEM', M'™)

C H'W
H'W’;Z
J

1=1

/ B )
—Mi{jl)?.

Furthermore, CoinSeg also adapts knowledge distillation
of logits z* and z'~!. Logits is the output of the model,
ie, zt = fi(r). Note 2t € RICY Ueul x HXW  yhere
ctt = U§:1 C' is all seen categories of step t, includ-
ing historical and present classes. As for logits zt~! ¢
RICT T Ueu| x HXW while Ct is not exist for previous model
ft—1. Following the common practice [+, |2, 26, 45], Coin-
Seg adopts the following approaches to remodeling the logits
2t for pixel 7 with class c:

P {Zf ifes e (10)

ic T
dject %y ife=cy

Then cross entropy loss L7, is adapted to distill logits:

= CB(E, )
= B W (11)

- mtme/ZIE: jlog ;"))

where we assign |C*~1| = [CY' ! Uc,|.
In summary, the regularization constraints in the flexible
tuning strategy are:

Lyeg = Lig+ Lig. (12)

3.4. Objective Function

Following the practice of previous methods[ 7], CoinSeg
adapt common Binary Cross-Entropy (BCE) loss as super-
vised segmentation loss £pc g with the augmented label g,
and the final objective function of CoinSeg is:

L= ['BCE + e »Cct + A ['reg~ (13)

4. Experiment
4.1. Experimental Setups

Dataset. We have evaluated our approach on datasets of
Pascal VOC 2012 [13] and ADE20K [50]. Pascal VOC 2012
contains 10,582 training images and 1449 validation images,
with a total of 20 foreground classes and one background
class. ADE20K contains 20,210 training images and 2,000
validation images with 100 thing classes and 50 stuff classes.

Protocols. Following the conventions of previous work
[5, 12, 49], we mainly evaluate our approach for CISS with
overlapped experimental setup, which is more realistic than



the disjoint setting that was studied by [, 20, 45]. For each
benchmark dataset, we examine our approach under multi-
ple incremental scenarios. We abbreviate each incremental
scenario in the form of X — Y, where X means the initial
number of base classes, and Y refers to the incremental num-
ber of classes in each step. For instance, the 10-1 scenario
of the VOC dataset (VOC 10-1) signifies 10 classes learned
at the first learning step, and 1 incremental class learned in
each subsequent step, i.e., VOC 10-1 scenario takes a total
of 11 steps to learn the entire dataset.

Implementation details. In accordance with the estab-
lished practice [+, 5, 20], we use DeepLabv3 [0] as the
segmentation network. CoinSeg chooses Swin Transformer-
base (Swin-B) [19] pretrained on ImageNet-1K as the back-
bone. Swin Transformer provides a better feature representa-
tion of the local patches, which is concerned in our CoinSeg.
For the segmentation head, we apply the dual-head architec-
ture from MicroSeg, including dense prediction branch and
proposal classification branch [49]. We optimize the model
by ADAMW [2 1] with an learning rate of lry = 10~*. The
batch size is 16 for Pascal VOC 2012, and 12 for ADE20K.
The window size for Swin Transformer is 12. Data augmenta-
tion [5] are applied for all samples. To ensure a fair compari-
son with previous methods, we apply the same class-agnostic
mask proposals with MicroSeg [49]. Specifically, mask pro-
posals are generated with parameters-fixed Mask2Former [ 7]
pre-trained on MS-COCO, with N = 100 for all experi-
ments. To prevent information leakage, the Mask2Former
is not fine-tuned on any benchmark dataset [49]. All ex-
periments are implemented with PyTorch on two NVIDIA
GeForce RTX 3090 GPUs. Hyper-parameters \;, = 1073,
Ae = 0.01 and A\, = 0.1 are set for all experiments.

Baselines. We evaluate our CoinSeg on multiple incremen-
tal scenarios. The performance of CoinSeg is compared
with some representative approaches in CIL, including Lwf-
MC [ 18] and ILT [25], which are applied to the experimental
setup of CISS. Besides, we provide the results of the prior
state-of-the-art CISS methods, including MiB [4], SDR [26],
PLOP [17], SSUL [5], RCIL [45], and MicroSeg [4Y]. To
ensure a fair comparison with recent state-of-the-art CISS
methods [5, 49] that employ different backbones, we pro-
duced results by replacing their backbones with Swin-B.
These methods are re-implemented with their official codes.
Methods with suffix ‘M’ (for example, SSUL-M) are with
memory sampling strategy [5], which maintains a mem-
ory bank of historical samples for rehearsal at future learn-
ing steps. Besides, we also provide the experimental re-
sults of joint training (training all classes together), on both
Resnet101 and Swin-B backbones. The result of joint train-
ing is usually regarded as the upper bound of incremental
learning [4, 1 &], i.e., offline training. The mean Intersection-

over-Union (mloU) is applied as the evaluation metric for all
experiments and analyses. For each method in CISS, three
perspectives are presented: the performance of base classes,
novel classes, and total performance, respectively. Please
refer to the supplementary material for more details.

4.2. Experimental Results

Comparison on VOC. On the Pascal VOC 2012 dataset,
we evaluate CoinSeg on various incremental scenarios, in-
cluding long-term scenarios with lots of learning steps (10-1,
15-1), with a large number of base classes (19-1, 15-5) and an
equally-divided long-term scenario (2-2). The performance
comparison of our approach with classical CIL methods and
prior CISS methods is presented in Tab. 1. Our CoinSeg
exhibits a significant performance advantage in all incremen-
tal scenarios, even when compared to the state-of-the-art
methods using Swin Transformer as the backbone.

In particular, in very long-term incremental scenarios
with few base classes, like 10-1 and 2-2, our CoinSeg brings
huge performance gaps of 6.7% and 17.8%, respectively,
in comparison to MicroSeg. The freeze strategy in SSUL
and MicroSeg prevented these methods from performing
well in incremental scenarios with few base classes. In such
scenarios, the base classes contain fewer concepts, which
can easily introduce bias for the representation learning of
novel classes. Our approach addresses this challenge by
allowing the model to adapt to novel classes with the design
of ‘contrast inter- and intra-class representations’. In such in-
cremental scenarios, the base classes contain fewer concepts
and can easily introduce bias for the representation learning
of novel classes. Besides, we concern the scenarios with a
large number of base classes (i.e., 19-1 and 15-5), in which,
CoinSeg achieves state-of-the-art with a performance gain
of 3.4% and 2.4%, compared with MicroSeg.

Besides, Fig. 5 (a,b) depicts the variations of mloU of all
seen classes by learning steps during incremental learning,
in two long-term incremental scenarios, i.e., VOC 15-1 and
VOC 2-2, respectively. The performance of each step de-
pends on two factors: 1) the forgetting of historical classes,
and 2) the ability to learn new classes. Fig. 5 (a) shows the
results of VOC 15-1, which involves a large number of base
classes. The performance of our CoinSeg exhibits the least
decrease with increasing training steps, suggesting that Coin-
Seg causes less forgetting of previously learned knowledge
than prior methods. In contrast, while VOC 2-2 consists of
18 novel classes, results of Fig. 5 (b) clearly demonstrate
that our CoinSeg is more adaptable to learning new classes,
compared to previous methods. Additionally, our CoinSeg
even shows a significant performance improvement while
learning new classes in some steps (steps 3, 4, and 8). Be-
sides, to demonstrate the robustness of CoinSeg, we provide
experimental results of VOC 15-1 with 20 different class
incremental orders, including average and standard variance



Table 1. Comparison with state-of-the-art methods on Pascal VOC 2012. f: Re-implemented with Swin-B backbone; is the upperbound.
VOC 10-1 (11 steps) | VOC 15-1 (6 steps) | VOC 19-1 (2 steps) | VOC 15-5 (2 steps) | VOC 2-2 (10 steps)
Method Backbone | 5 10 1120 all | 015 1620 all [0-19 20 all | 0-15 1620 all | 02 3-20 all
LwF-MC [ 5] Resnet101 | 4.7 59 4.9 6.4 8.4 69 | 644 133 619 | 58.1 350 523 35 4.7 4.5
ILT [25] Resnet101 | 7.2 3.7 5.5 8.8 8.0 86 | 678 109 651 | 67.1 392 605 | 58 5.0 5.1
MiB [4] Resnet101 | 12.3  13.1 12.7 | 342 135 293 | 714 236 692 | 764 50.0 70.1 | 41.1 234 259
SDR [76] Resnet101 | 32.1 170 249 | 447 218 392 | 69.1 326 674 |574 526 699|130 5.1 6.2
PLOP [17] ResnetlO1 | 440 155 305 | 65.1 21.1 546 | 754 374 735|757 517 70.1|241 119 13.7
RCIL [45] ResnetlO1 | 554 151 343 | 70.6 237 594 | 685 121 658 | 788 520 724|283 19.0 194
SSUL [5] ResnetlO1 | 71.3  46.0 593 | 773 366 676 | 777 297 754 | 778 50.1 712|624 425 453
MicroSeg [49] ResnetlO1 | 726 487 612 | 80.1 368 698 | 788 140 757 | 804 528 738 | 614 40.6 435
SSULT[5] Swin-B 743 510 632 | 781 334 675|808 315 784 | 797 553 739|603 406 44.0
MicroSegt [4Y] Swin-B 735 530 638 | 805 40.8 71.0]79.0 253 764 |8l9 540 752|648 434 465
CoinSeg (Ours) | Swin-B | 80.1 60.0 70.5 | 82.7 525 755|815 448 798 | 821 632 776|701 633 643
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Figure 5. Performance comparisons for VOC. Illustration of the change of miou with learning step in (a) VOC 15-1, (b) VOC 2-2. Note we
calculate mean IoU for all seen classes until current learning step. e.g., the mloU of classes 0-10 for VOC 2-2 step 5. And (c) Average
performance comparisons with 20 different incremental orders of VOC 15-1.

of mloU, illustrate as Fig. 5 (c). The results indicate that our
approach performs better and is more robust, with a lower
standard variance.

Comparison on ADE. For the more challenging ADE
dataset, we choose incremental scenarios that have been
widely compared in past methods, including 100-5, 100-10,
100-50, and 50-50, shown in Tab. 2. Our method, Coin-
Seg, outperforms previous state-of-the-art once again, which
shows that our method is not specific to a particular dataset
and is effective under multiple benchmarks.

4.3. Ablation Studies

Overall ablation of CoinSeg. In this section, we present
an evaluation of each specific design of the proposed Coin-
Seg, including the Swin Transformer, Flexible Tuning (FT)
strategy, and Contrast inter- and intra-class Representa-
tions (Coin). As shown in Tab. 4, we can find that all these
proposed designs benefit the performance of CISS. By re-
placing the backbone with Swin-Transformer (row 1 vs row

2), it improves the ability of feature representation of the
feature extractor, which is especially beneficial for the repre-
sentation of local features, and necessary for CoinSeg. The
comparison between row 2 and row 3 reflects the experiment
of replacing the freeze strategy with the FT strategy, showing
that the FT enhances model plasticity, allowing adaptation to
novel classes, and slightly improving the performance. The
application of Coin (row3 vs row4) significantly improves
the performance by imposing explicit constraints on intra-
class and inter-class diversity, thereby enhancing the model’s
ability to represent data. Overall, these components enable
CoinSeg to achieve state-of-the-art performance.

Number of proposal in £;;,.. We also investigated the
influence of hyperparameter N on the method’s performance
concerning contrast intra-class diversity. Specifically, we
explored how altering the number of proposals would affect
the proposed CoinSeg. The results are presented in Tab. 5.
It can be observed that with N increases, there is a slight
improvement in performance, albeit with diminishing returns



Table 2. Comparison with state-of-the-art methods on ADE20K. : Re-implemented with Swin-B backbones;

is the upperbound.

ADE 100-5 (11 steps) ADE 100-10 (6 steps) ADE 100-50 (2 steps) ADE 50-50 (3 steps)

Method Backbone 5 100 101-150 all | 0-100 101-150 all | 0-100 101-150 all | 0-50 51-150 all
ILT [25] Resnet101 0.1 1.3 0.5 0.1 3.1 1.1 18.3 14.4 17.0 | 3.5 12.9 9.7
MiB [4] Resnet101 | 36.0 5.7 26.0 | 38.2 11.1 29.2 | 40.5 17.2 32.8 | 45.6 21.0 29.3
PLOP [17] Resnet101 | 39.1 7.8 28.8 | 40.5 13.6 31.6 | 419 14.9 32.9 | 48.8 21.0 30.4
SSUL [5] Resnet101 | 39.9 17.4 325 | 40.2 18.8 33.1 | 413 18.0 33.6 | 48.4 20.2 29.6
RCIL [45] Resnet101 | 38.5 11.5 29.6 | 393 17.7 32.1 | 423 18.8 345 | 48.3 24.6 32,5
MicroSeg [49] Resnet101 | 40.4 20.5 33.8 | 41.5 21.6 349 | 40.2 18.8 33.1 | 48.6 24.8 329
SSUL ¥ [7] Swin-B 41.3 16.0 329 | 40.7 19.0 335 | 419 20.1 34.6 | 49.5 21.3 30.7
MicroSeg 1 [4Y] Swin-B 41.2 21.0 345 | 41.0 22.6 348 | 41.1 24.1 354 | 49.8 23.9 32,5
CoinSeg Swin-B \ 43.1 24.1 36.8 \ 42.1 24.5 36.2 \ 41.6 26.7 36.6 \ 49.0 289 356

Table 3. Comparisons of CoinSeg using memory sampling strategy. 1: Re-implemented with Swin-B backbone.
VOC 10-1 (11 steps) | VOC 15-1 (6 steps) | VOC 19-1 (2 steps) | VOC 15-5 (2 steps) | VOC 2-2 (10 steps)
Method Backbone | o 10" 1120 all | 0-15 1620 al |0-19 20 all |05 1620 all | 02 320 al
SSUL-M [5] Resnetl01 | 74.0 532 64.1 | 784 490 714|778 498 765 | 784 558 73.0 | 58.8 458 47.6
MicroSeg-M [+Y] ResnetlO1 | 77.2 572 67.7 | 81.3 525 744|793 629 785 |82.0 592 766|600 509 522
SSUL-MT [5] Swin-B 753 541 652 | 788 497 719|785 50.0 77.1 | 793 551 735 |61.1 475 494
MicroSeg-M+ [49] Swin-B 789 592 70.1 | 82.0 473 737|810 624 800 | 829 60.1 775|627 514 53.0
CoinSeg (Ours) Swin-B 80.0 634 725 | 827 525 755|815 448 798 | 82.1 632 77.6| 701 633 643
CoinSeg-M (Ours) Swin-B 813 644 737 | 841 656 79.6 | 82.7 526 813 | 841 699 808 | 684 656 66.0
Table 4. Ablation Studies for our proposed methods. Coin: contrast Table 6. The performance of Flexible tuning for prior freeze-

inter- and intra-class representations, Fz: Freeze strategy, FLR:
flexible initial learning rate. Numbers in the brackets (): gains w.r.t.
the preceding row.

parameter strategy Coin VOC 15-1 (6 steps)
Backbone | 5y 0V LF, L7y | Lo Lie | 015 1620 all
ResNet101 | Fz X X X X | 749 264 63.3
Swin-B Fz X X X X | 795 424 70.5
Swin-B FLR | X X X X | 73.6 440 66.7
Swin-B FLR | V/ X X X | 789 427 703 (+3.6)
Swin-B |FLR| v v | X X | 804 437 716(+1.3)
Swin-B FIR | V/ v v X | 80.8 459 72.4(+0.8)
Swin-B FLR | v/ v v v | 827 525 755(+3.1)

Table 5. Ablations to # of proposals (V) in L;s (Left), and pseudo-
labeling in L;,+ (Right). GT: ground truth, PL: pseudo label.

VOC 15-1 (6 steps)

Method N1 ) 15" 1620  al
50 | 814 511 742

CoinSeg 100 | 827 525 75.5
200 | 831 538  76.1

as the cardinality grows. Consequently, considering a trade-
off between performance and computational complexity, we
choose N = 100 in our method.

4.4. Qualitative Analysis

We have conducted a qualitative analysis using two ex-
amples in Fig. 6. In the first example (rows 1,3 & 5), during
incremental learning, CoinSeg is able to retain knowledge

strategy-based method MicroSeg, ‘FT’ denotes flexible tuning .

parameter VOC 15-1 (6 steps)
Method | Backbone strategy | 0-15 16-20 all
Resnet101 Freeze 80.5 40.8 71.0
MicroS Resnet101 FT 809 415 723(+1.3)
1eroseg Swin-B Freeze 80.1 36.8 69.8
Swin-B FT 79.8 402  70.4 (+0.6)

about past classes and accurate predictions for them, whereas
prior methods exhibit forgetting and misclassification, which
demonstrated the stability of CoinSeg. The second exam-
ple (rows 2, 4 & 6), demonstrates the plasticity of our method,
which refers to the ability to learn new classes. For example,
while prior methods predicted wrong bounds for the class
‘train’ in incremental learning, our method is better adapted
to these new classes making appropriate predictions.

4.5. Expansibility of CoinSeg

Flexible tuning on prior methods. As claimed, the FT
strategy flexibly releases parameter training for plasticity and
provides some more specific parameter tuning ways to ensure
stability as well. To better validate the effectiveness of the
FT strategy, we applied the FT strategy to the state-of-the-art
method MicroSeg, and compared the results to its original
freeze strategy, as shown in Tab. 6. The results demonstrate
that on both backbones, applying the FT strategy leads to
better performance, particularly, for the new classes, which
proves that model plasticity is significantly enhanced by
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Figure 6. Qualitative analysis for VOC, comparing with prior CISS methods. Text points out the uncorrectly predicted areas.

the FT strategy. It means that the FT strategy can be also
extended to other CISS methods for better performance,
especially performance relying on model plasticity.

CoinSeg with memory sampling. The memory sam-
pling strategy alleviates forgetting by rehearsing samples
from past learning steps, and significantly improves perfor-
mance [5, 49]. Thus, we produce the results of CoinSeg with
this strategy, denoted as CoinSeg-M, for comparison with
prior methods with the same strategy. As shown in Tab. 3,
our CoinSeg (the 5;;, row) achieves better performance in
almost all incremental scenarios, even when compared with
previous work using the sampling strategy. When equipped
with the memory sampling method, i.e., CoinSeg-M, it un-
doubtedly achieves state-of-the-art performance.

5. Conclusion

In this work, we studied class incremental semantic seg-
mentation and proposed an effective method CoinSeg. In-
spired by the Gaussian mixture model, we proposed Coin
to better characterize samples with explicitly constrain inter-
and intra- class diversity. Furthermore, we proposed a flex-
ible tuning strategy, to keep the stability of the model and
alleviate forgetting by the flexible initial learning rate and
regularization constraints. Extensive experimental evalua-
tions show the effectiveness of our method. CoinSeg out-
performs prior state-of-the-art CISS methods, especially on
more challenging long-term incremental scenarios.
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