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Abstract—Few-shot Semantic Segmentation (FSS) aims to ac-
curately segment query images with guidance from only a few an-
notated support images. Previous methods typically rely on pixel-
level feature correlations, denoted as the many-to-many (pixels-
to-pixels) or few-to-many (prototype-to-pixels) manners. Recent
mask proposals classification pipeline in semantic segmentation
enables more efficient few-to-few (prototype-to-prototype) corre-
lation between masks of query proposals and support refer-
ence. However, these methods still involve intermediate pixel-
level feature correlation, resulting in lower efficiency. In this
paper, we introduce the Proposal and Reference masks matching
transFormer (PRFormer), designed to rigorously address mask
matching in both spatial and semantic aspects in a thorough
few-to-few manner. Following the mask-classification paradigm,
PRFormer starts with a class-agnostic proposal generator to
partition the query image into proposal masks. It then evaluates
the features corresponding to query proposal masks and support
reference masks using two strategies: semantic matching based on
feature similarity across prototypes and spatial matching through
mask intersection ratio. These strategies are implemented as
the Prototype Contrastive Correlation (PrCC) and Prior-Proposals
Intersection (PPI) modules, respectively. These strategies enhance
matching precision and efficiency while eliminating dependence
on pixel-level feature correlations. Additionally, we propose the
category discrimination NCE (cdNCE) loss and IoU-KLD loss to
constrain the adapted prototypes and align the similarity vector
with the corresponding IoU between proposals and ground truth.
Given that class-agnostic proposals tend to be more accurate
for training classes than for novel classes in FSS, we introduce
the Weighted Proposal Refinement (WPR) to refine the most
confident masks with detailed features, yielding more precise
predictions. Experiments on the popular Pascal-5i and COCO-
20i benchmarks show that our Few-to-Few approach, PRFormer,
outperforms previous methods, achieving mIoU scores of 70.4%
and 49.4%, respectively, on 1-shot segmentation. Code is available
at https://github.com/ANDYZAQ/PRFormer.
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matching, proposal masks, and contrastive learning.
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(a) Pixel-level correlation pipeline (many-to-many & few-to-many).

(b) Proposal-based matching pipeline. (few-to-few)

Fig. 1. Comparison of various FSS Pipelines. (a) shows pixel-level correlation
pipeline, showcasing both the many-to-many manner with dense pixel compar-
isons and the few-to-many manner with prototype-to-pixel comparisons. (b)
presents the proposal-based pipeline, where proposals are pooled as prototypes
for comparisons. The upper part of (b) depicts the few-to-few manner, but
with pixel-wise alignment attached in a many-to-many fashion. In contrast,
the lower part highlights our thorough few-to-few PRFormer, which effectively
eliminates dependence on pixel-level correlations.

I. INTRODUCTION

Unlike traditional semantic segmentation, which is resource-
intensive and time-consuming, Few-shot Semantic Segmen-
tation (FSS) utilizes only a few annotated support images
for class-agnostic segmentation of novel categories, as first
introduced in OSLSM [1]. FSS methods primarily use a
pixel prediction paradigm, focusing on feature extraction and
pixel-level similarity assessment between query and support
images, as shown in Fig. 1a. These methods [2], [3] pri-
marily emphasize exploring pixel-level feature correlations
to enhance similarity assessment. Some approaches [4], [5]
condense the annotated support features into semantic-level
prototypes, correlating them with query pixels in a few-to-
many manner, whereas others [6], [7] employ complete many-
to-many pixel-wise correlations between query and support
features. Attracted by the superficial benefits of many-to-many
or few-to-many dense correlation, recent works have focused
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on exploring stronger pixel-level feature correlations in a
dense matching manner. However, most of these methods akin
to ‘robbing Peter to pay Paul’, typically demand substantial
training time and resources for robust model development and
are more prone to overfitting specific datasets.

Recently, mask proposals, originating in Object Detection,
have been adapted for semantic segmentation [8], [9]. Building
on MaskFormer [8], various subfields of semantic segmenta-
tion, e.g., Open Vocabulary Semantic Segmentation [10], [11],
have gained traction. MMFormer [12] advances MaskFormer’s
concept by presenting a two-stage FSS framework in a few-
to-few way, generating mask proposals for query images, and
then performing similarity assessment between mask proto-
types from query proposals and support reference. However,
influenced by most methods’ continuous pursuit of perfor-
mance gains through dense pixel-level matching, MMFormer
has not escaped the superficial benefits of pixel-level feature
correlation. Fig. 1b shows that its Mask Matching module
unintentionally includes a Feature Alignment Block to align
query and support pixel features in a many-to-many manner,
rendering MMFormer a partially few-to-few approach.

To address mask matching with pooled prototypes through
a real few-to-few manner, we propose a mask-classification-
based approach, i.e., Prototype and Reference masks matching
transFormer (PRFormer). In PRFormer, with the class-agnostic
proposals, the few-to-few matching is realized in a dual
strategy of semantic matching across prototypes, and spatial
matching over masks, for more precise similarity assessment.
Specifically, a simple yet effective pure prototype-based multi-
scale matching module, i.e., Prototype Contrastive Correla-
tion (PrCC), is proposed for similarity assessment in the se-
mantic view. Besides, when describing the similarity between
two masks, the extent of overlap in their spatial distribution
is the same important as the similarity between the masked
features. Therefore, the Prior-Proposals Intersection (PPI)
module is designed to measure spatial similarity with the ratio
of spatial overlap in the proposal and reference masks.

Additionally, the success of proposal-based methods heavily
depends on the proposals’ quality, yet proposal generators
in few-shot scenarios often favor base classes, leading to
less accurate proposals for novel classes. To address this,
we introduce the Weighted Proposal Refinement (WPR), to
meticulously refine the most reliable proposal masks with
detailed features for better prediction. We further design the
category discrimination NCE (cdNCE) loss for PrCC that
buffers and updates support prototypes for contrastive learning
with the current adapted query prototypes. We also introduce
the IoU Kullback-Leibler Divergence (IoU-KLD) loss to align
the similarity vector close to binary IoU between query
proposal masks and ground truth reference masks.

In summary, our contributions are as follows:
• We introduce PRFormer, a few-to-few approach that im-

proves mask similarity assessment in semantic and spatial
aspects via Prototype Contrastive Correlation (PrCC) and
Prior-Proposals Intersection (PPI) modules.

• To address the tendency of proposal-based FSS methods
to favor base classes and produce inaccurate proposals
for novel classes, we introduce the Weighted Proposal

Refinement (WPR) for refining reliable masks with de-
tailed features, complemented by two specific losses to
boost prediction accuracy.

• Extensive evaluations on the Pascal-5i and COCO-20i

datasets show that our PRFormer achieves state-of-the-
art performance with high efficiency.

II. RELATED WORK

A. Semantic Segmentation

Fully Convolutional Networks [13] accelerate the advance-
ment of semantic segmentation. Following that, various tech-
niques have emerged to further enhance semantic segmenta-
tion, including encoder-decoder structures [14], dilated con-
volution [15]–[17], pyramid pooling operation [18], attention
mechanism [19], and Transformer modules [20], among oth-
ers. Recently, inspired by the proposal generation mechanism
used in object detection [21], MaskFormer/Mask2Former [8],
[9] introduced a two-stage segmentation pipeline, involving
proposal generation and classification. The class-agnostic pro-
posal generation process provides accurate mask proposals
from the original image, simulating the logic of recognizing
objects of humans and revolutionizing the field of semantic
segmentation. The recent segmentation foundation model, Seg-
ment Anything [22], builds on the concept of Mask2Former
by generating high-quality class-agnostic masks from various
prompts such as points, boxes, and coarse masks. However,
despite these advancements, semantic segmentation methods
still struggle with generalizing to novel categories, primarily
due to the necessity of obtaining new annotations and retrain-
ing models, a labor-intensive endeavor.

B. Few-shot Semantic Segmentation

Few-shot Semantic Segmentation (FSS) infers the pixel-
level prediction of novel categories with a few annotated
samples. Previous methods relying on pixel-level feature
comparison are mainly divided into two groups: prototype
comparison methods [23]–[29] and pixel-wise comparison
methods [6], [7], [30], [31]. Prototype comparison meth-
ods, inherited from the few-shot learning [32], use semantic
prototypes to facilitate interactions between the query and
support samples. These methods employ Masked Average
Pooling [5] to aggregate support features based on their
corresponding masks, creating prototypes. Query features are
then compared to these prototypes using cosine similarity or
learnable convolutional operations. While support prototypes
capture the global features of the support object, they may
overlook internal variations. In contrast, pixel-wise comparison
methods, largely embodied in HSNet [6], focus on intra-class
differences using operations like the 4D Hypercorrelation op-
eration for more detailed excavation. Subsequent methods [7],
[33] have further introduced transformer-based structures to
enhance 4D pixel-wise comparisons. Recent approaches [34]–
[37] combine both prototype and pixel-wise methods for a
more comprehensive feature comparison. Additionally, the
proposal-based structure [12] has emerged as a novel pipeline
in FSS, which contains a proposal generator for generating
a bunch of class-agnostic masks, followed by a few-to-few
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Fig. 2. Overall framework of the proposed PRFormer. PRFormer primarily comprises a ResNet-based backbone and a proposal generator for feature extraction,
the Prototype Contrastive Correlation (PrCC) and Prior-Proposals Intersection (PPI) modules for mask similarity assessment, alongside the Weighted Proposal
Refinement (WPR) module for prediction refinement. Conv1 and Conv3 denote 1× 1 Convolution blocks, while Conv2 refers to 3× 3 Convolution block.

prototype comparisons for proposal selection. However, the
proposal selection process still relies on pixel-level dense
feature alignment, thus not fully embodying a pure few-to-
few method. Considering these developments, our approach
employs a proposal-based structure with a duplex prototype
and mask matching stream, merging semantic and spatial
similarity for thoroughly few-to-few proposal selection.

III. PRELIMINARIES

The Few-shot Semantic Segmentation (FSS) task aims to
enable segmentation with guidance from a few annotated sam-
ples. In the standard FSS task, to evaluate the generalization
ability of meta-learning approaches, datasets are divided into
the training and test sets, denoted as Dtrain and Dtest, with
disjoint categories. The categories are correspondingly divided
into two groups: training classes Ctrain and testing classes
Ctest, aligning with Dtrain and Dtest, respectively. Each set
comprises episodes containing a query set Q and a support
set S. The query set Q = {(IQ,MQ)} includes a query
image IQ and its corresponding ground truth segmentation
mask MQ. The support set S = {(IS

i ,M
S
i )}Ki=1 contains K

pairs of the support image IS
i and its mask MS

i . Importantly,
the query set Q and the support set S belong to the same
category. During each training iteration, a group of query set Q
and support set S belonging to Dtrain is applied. The support
images IS

i , accompanied with their corresponding support
masks MS

i , provide the reference for the target category.
Guided by support set S, the learnable parameters of the
model are optimized through the loss between predictions for
query images IQ and the ground truth MQ. After the training
episodes, the model’s performance is assessed on Dtest. The
inference of a query image IQ is conducted with the reference
of a support set S containing the object of the same category,
following the training process. The predictions for the query
image IQ are evaluated across all testing episodes. The testing

samples are selected from the categories that do not exist in the
Ctrain, which ensures the evaluation result is not influenced
by overfitting on Ctrain.

IV. APPROACH

Our approach, Proposal and Reference masks matching
transFormer (PRFormer), is mainly composed of the ResNet
backbone, the proposal generator, as well as the mask sim-
ilarity assessment between masks of query proposals and
support reference that combines the Prototype Contrastive
Correlation (PrCC), Prior-Proposals Intersection (PPI), and the
Weighted Proposal Refinement (WPR) modules, as shown in
Fig. 2. The proposal generator is built upon the architecture
of Mask2Former [9] and mainly includes the pixel decoder
and transform decoder. Subsequent similarity assessment op-
erations involve pure few-to-few mask matching in both the
semantic and spatial views, departing from the dense pixel-
wise feature matching used in traditional methods. The PrCC
module conducts semantic affinity and compatibility assess-
ment, while the PPI module introduces parameter-free spatial
overlap assessment on masks. The WPR module further refines
the prediction result with selected confident proposals and
pixel-level features.

A. Feature Extraction
We adopt ResNet [38] as the backbone to extract features

for input support and query images, denoted as F S and
FQ, respectively. Here, F = {Fl}, where l ∈ {0, 1, 2, 3, 4}
represents the block index in the backbone. While the pixel
decoder of the proposal generator takes F2, F3, and F4

as input, it produces three semantically enriched multi-scale
feature maps Fp2, Fp3, and Fp4, which are further used by
PrCC. Meanwhile, the transformer decoder of the proposal
generator partitions the query image into N proposals, which
are represented as masks Mq = {Mn

q }Nn=1 ∈ [0, 1]N×H×W .
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Fig. 3. Illustration of LcdNCE . The query prototypes from the proposals
are weighted and aggregated according to the similarity vector, as shown in
Eq. 2, then LcdNCE is computed following Eq. 3. The corresponding buffer
prototype is updated with momentum by the current support prototype.

B. Matching Process

1) Prototype Contrastive Correlation (PrCC): The PrCC
module is designed to facilitate matching between semantic-
level prototype features in multi-scale, thereby eliminating
the need for dense pixel-level matching. Previous methods
like MMFormer [12] utilize backbone-derived features F ◦

2 ,
F ◦
3 , and F ◦

4 for matching, where the placeholder ‘◦’ denotes
either the support (S) or query (Q) image. The PrCC module,
however, leverages the features from the proposal generator
for matching, i.e., F ◦

p2, F ◦
p3, and F ◦

p4. It not only harnesses
richer semantic features from the proposal generator but also
markedly enhances efficiency with fewer feature dimensions,
from 512, 1024, and 2048 channels of the backbone to 256
channels of the proposal generator. In detail, with the query
proposals Mq ∈ RN×H×W and the support reference mask
MS ∈ RH×W , we respectively apply the Masked Average
Pooling [5] on the support and query features from proposal
generator for corresponding support prototype vector vS

i ∈
R1×C , and N query prototype vectors vQ

i = {vQ
i,n} ∈ RN×C ,

where i ∈ {p2, p3, p4}.
Then, we design a simple yet efficient adaptation structure

to regulate these multi-scale prototypes with the Multi-Layer
Perceptron (MLP). On one side, we separately adapt each
prototype for local adaptation and combine them via con-
catenation, i.e., v̂◦ = [MLP (v◦p2),MLP (v◦p3),MLP (v◦p4)],
where [·] means concatenation. On the other side, these
prototypes are first concatenated and then regulated by inter-
level adaptation, i.e., v̌◦ = MLP ([v◦

p2,v
◦
p3,v

◦
p4]). After

that, a Linear layer unifies v̂◦ and v̌◦ as υ◦ ∈ RN×C .
Transitioning the placeholder ◦ ∈ {S,Q}, we get υS and
υQ = {υQ(n)}Nn=1 for the adapted support prototype and
N adapted query prototypes respectively. We measure the
cosine similarity between N query prototypes and the support
prototype as s1 = {s1(n)}Nn=1 ∈ RN×1 for prototype based
semantic matching, where

s1(n) =
υQ(n)(υS)T

∥υQ(n)∥∥υS∥ . (1)

Current FSS methods have to prevent overfitting to the data
of training classes Ctrain, since the test classes Ctest do not
exist in Ctrain, so as our PRFormer. The PrCC module, while
efficient in matching, is prone to overfitting to the data of
Ctrain due to its high-level simplification of features into
prototypes. Thus, restricting the adaptation with some specific
loss is warranted, especially ensuring that similar category
prototypes are closer while different category prototypes are
farther apart. In response, we introduce the category discrimi-
nation NCE (cdNCE) loss LcdNCE to constrain the adaptation
in PrCC. Specifically, we registered a buffer υbuf ∈ Rr×C for
storing support prototypes of r seen categories during training.
Whenever the prototypes are adapted, the query prototypes υQ

are weighted and aggregated as a single average prototype ῡQ

by the similarity vector s1:

ῡQ =
1

N

N∑
n=1

s1(n) · υQ(n). (2)

With dot production-based similarity, we formulate cdNCE
loss based on the registered buffer and average prototype as:

LcdNCE = −log
exp(ῡQ · υS)∑|Ctrain|

i=0 exp(ῡQ · υbuf
i )

, (3)

where the support prototype υS serves as the positive sample,
whereas the buffered prototypes of other categories act as
negative ones. Meanwhile, the buffer is updated by the current
support prototype υS in a momentum way, so that the buffer
prototypes can continually represent the feature of Ctrain:

υb
i = (1− α) · υbuf

i + α · υS , (4)

where α represents the update momentum. The whole process
is illustrated in Fig. 3.

2) Prior-Proposal Intersection (PPI): In the PrCC module,
prototype matching efficiently captures semantic features yet
lacks spatial information, which is another crucial factor for
segmentation. To address this issue while maintaining an effi-
cient few-to-few approach, we further introduce the parameter-
free Prior-Proposal Intersection (PPI) module. Given that intra-
class variations are prevalent within the same object or cate-
gory, our PPI module evaluates the spatial correlation between
two types of pseudo masks for the query image. One of the
pseudo masks is the query proposal masks Mp mentioned in
Sec. IV-A. The other pseudo mask is the prior mask M̃p,
generated by utilizing features from the backbone, including
query features FQ

4 , support features F S
4 , and support mask

MS . These fine-grained semantic features are then converted
into a prior mask M̃p ∈ RH×W , widely used in previous FSS
approaches [23], [39], [40]:

M̃p(i, j) = max
t∈{1,2,...,HW}

(
I(FQ

4 (d))TI(F S+

4 (t))

∥I(FQ
4 (d))∥∥I(F S+

4 (t))∥

)
, (5)

where I represents flattening the spatial dimensions from h×w
to hw, F S+

4 (t) is the foreground part of F S
4 (t) according to

MS , d = i ×W + j and s denote the index of pixel in FQ
4

and F S
4 , respectively. This prior mask M̃p serves to provide

a rough probability estimate for pixels of the query image
belonging to the target class, as the similarity value of a pixel
in FQ

4 largely depends on its most similar part in F S
4 .
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Hitherto, we have two groups of potential prompts for the
query image, namely the proposal masks Mp = {Mn

p }Nn=1

and the prior mask M̃p. The former summarizes the internal
features from query samples, while the latter emphasizes
the category features from the target objects in the sup-
port samples. While explaining the resemblance between two
masks, the proportion of their overlapping region in the spatial
arrangement is a significant measure of similarity, as most
semantic segmentation evaluations utilize Intersection over
Union (IoU) as the metric. Therefore, we design an efficient
mask-matching measurement on these two types of prompts as
spatial similarity. For proposal mask Mn

p and the prior mask
M̃p, we estimate the influence of the high-probability region
with the proportion of the intersection area over the proposal
area as spatial similarity vector s2 = {s2(n)}Nn=1 ∈ RN×1:

s2(n) =
sum(Mp(n)⊙ M̃p)

sum(Mp(n))
, (6)

where ⊙ represents the Hadamard production, and sum means
to sum the value over all pixels. The proportions are ensembled
as s2 = {s2(n)}Nn=1, which squeezes the pixel-level mask-
matching process into a concise similarity vector to present
the level of spatial overlap.

3) Initial Segmentation Prediction: The PrCC module gen-
erates a semantic similarity vector s1 across prototypes, while
the PPI module produces a spatial similarity vector s2 across
proposal masks. These similarity vectors are combined into
a unified similarity vector s. We concatenate s1 and s2 into
a 2N -channel vector, and then use an MLP layer to squeeze
them into a unified similarity vector s = {s(n)}Nn=1 ∈ R1×N .
This unified vector offers a more precise measure of the
similarity between each query proposal and the support mask.
Subsequently, the initial segmentation prediction is derived by
applying a weighted sum of the proposal masks, where the
similarity vector s serves as the weights. The proposal-based
initial segmentation prediction is defined as ỹin ∈ R1×H×W :

ỹin =

N∑
n=1

s(n)Mp(n). (7)

C. Refinement and Optimization

1) Weighted Proposal Refinement (WPR): The precision of
proposal-based prediction ỹin is highly related to the precision
of the similarity vector s, and the quality of proposal masks
Mp. However, due to the lack of intersection between training
classes Ctrain and novel classes Ctest, the proposal generator
tends to accurately segment the training classes, resulting
in less accurate proposals for novel classes. Recognizing
the synchronized improvement or deterioration of mask-level
predictions, we introduce a lightweight post-process module,
the Weighted Proposal Refinement (WPR).

The WPR module enhances performance by adjusting the
representative similarity-weighted proposals and the predic-
tions using detailed features. We first multiply the similarity
vector s with the proposals Mp to obtain the weighted
proposals Mwp. Then, proposals in Mwp are sorted based
on the similarity values from the similarity vector s. However,

within the set of N proposals, many may not cover the desired
regions, resulting in considerable redundancy. Consequently,
after sorting, we keep only two groups of proposals: the top-
k most likely to contain the target and the bottom-k least
likely to do so, for subsequent prediction. We merge these 2k
proposal masks as Msp ∈ R2k×H×W with detailed features,
producing more precise predictions. Specifically, we compress
the concatenated features of middle-level features F ◦

2 and F ◦
3

to F ◦
m ∈ RC×H×W with C channels. The support middle-

level features F S
m are transformed into global support features

F S
g ∈ RC×H×W via MAP and feature expansion. Leveraging

these middle-level features, the proposal-based prediction is
then refined for a more robust prediction by

ỹ = Frefine(ỹin,F
Q
m ,F S

g ,Msp), (8)

where Frefine denotes the lightweight refinement module with
a group of 1× 1 and 3× 3 convolutional blocks.

2) Objective Function: We follow the Mask2Former [9]
and MMFormer [12] settings on the Proposal Generator and
apply both Binary Cross-Entropy loss Lce and dice loss Ldice.
To optimize the predictions ỹin and ỹ, we adopt dice loss [50]
with guidance from the ground truth mask MQ as Lp and Lfp.
In the prediction generation, condensation of the proposals
and similarities leads to coarse learning for the prediction.
To precisely optimize the similarity vector, we introduce a
specialized IoU Kullback-Leibler Divergence (IoU-KLD) loss:

LIoU−KLD =

N∑
n=1

(sIoU (n) · log s
IoU (n)

s(n)
), (9)

where sIoU means the IoU between the ground truth mask
MQ and the proposal masks Mp. The IoU-KLD loss
LIoU−KLD seeks to align the similarity scores with the
IoU, considering all associated similarities for each proposal.
Overall, the loss function can be unified as

L =λ1(Lce + Ldice) + λ2(Lp + Lfp)

+ λ3LcdNCE + λ4LIoU−KLD,
(10)

where λ1, λ2, λ3, λ4 are specified in the experiments.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics
We evaluate our PRFormer on two benchmark datasets:

PASCAL-5i [1] and COCO-20i [52]. PASCAL-5i is an ex-
tension of PASCAL VOC 2012 [53], supplemented with addi-
tional annotations from SDS [54], encompassing 20 categories.
COCO-20i is derived from COCO [55] with 80 categories.
We adopt the cross-validation by dividing the datasets into
4 folds, each containing 5 categories for PASCAL-5i and 20
for COCO-20i. We split the PASCAL-5i following [1], where
the categories are divided in sequential order, i.e. categories
of {5 · i + 1, 5 · i + 2, . . . , 5 · i + 5} belong to the i-th fold.
For COCO-20i, we follow [52] and pick one category out of
every three in sequential order for each fold, i.e. categories
of {4 · 0 + i, 4 · 1 + i, . . . , 4 · 19 + i} belong to the i-th
fold. Three of the four folds are used for training, while the
remaining fold is randomly sampled into 1000 episodes for
evaluation. Consistent with most previous methods, we employ
mean Intersection over Union (mIoU) as the evaluation metric.
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TABLE I
PERFORMANCE COMPARISONS WITH THE SOTA METHODS FOR 1-SHOT AND 5-SHOT SEGMENTATION ON PASCAL-5i IN MIOU. THE RESULTS IN BOLD

REFER TO THE BEST RESULT AMONG ALL METHODS. †: WE EVALUATED MMFORMER WITH RESNET-101 BASED ON ITS OPEN-SOURCED CODE.

Method 1 shot 5 shot
Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

Pixel-level feature correlation methods with ResNet-50
PANet [ICCV19] [41] 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3
PGNet [ICCV19] [42] 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
PPNet [ECCV20] [43] 48.6 60.6 55.7 46.5 52.8 58.9 68.3 66.8 58.0 63.0

PFENet[TPAMI20] [23] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
RePRI [CVPR21] [44] 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6

CWT [CVPR21] [2] 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7
ASGNet [CVPR21] [24] 58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9

HSNet [ICCV21] [6] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
CyCTR [NeurIPS21] [45] 65.7 71.0 59.5 59.7 64.0 69.3 73.5 63.8 63.5 67.5

SSP [ECCV22] [46] 60.5 67.8 66.4 51.0 61.4 68.0 72.0 74.8 60.2 68.8
DCAMA [ECCV22] [7] 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5

VAT [ECCV22] [33] 67.6 72.0 62.3 60.1 65.5 72.4 73.6 68.6 65.7 68.5
BAM [CVPR22] [39] 69.0 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.0 70.9

QCLNet [TCSVT23] [30] 65.2 70.3 60.8 61.0 64.3 70.6 73.5 66.7 67.1 69.5
MIANet [CVPR23] [47] 68.5 75.8 67.5 63.2 68.7 70.2 77.4 70.0 68.8 71.6
ABCNet [CVPR23] [48] 68.8 73.4 62.3 59.5 66.0 71.7 74.2 65.4 67.0 69.6

RPMG-FSS [TCSVT23] [31] 64.4 72.6 57.9 58.4 63.3 65.3 72.8 58.4 59.8 64.1
SCCAN [ICCV23] [49] 67.5 72.6 67.2 60.5 67.0 69.9 74.3 70.1 66.9 70.3
DRNet [TCSVT24] [37] 66.1 68.8 61.3 58.2 63.6 69.2 73.9 65.4 65.3 68.5

Proposal-based methods with ResNet-50
MMFormer [NeurIPS22] [12] - - - - 63.3 - - - - 64.9

PRFormer [Ours] 70.2 75.0 67.3 65.4 69.5 72.4 76.8 70.4 68.3 71.9
Pixel-level feature correlation methods with ResNet-101

PFENet [TPAMI20] [23] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
RePRI [CVPR21] [44] 59.6 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5

HSNet [ICCV21] [6] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4
CyCTR [NeurIPS21] [45] 69.3 72.7 56.5 58.6 64.3 73.5 74.0 58.6 60.2 66.6

NTRENet [CVPR22] [40] 65.5 71.8 59.1 58.3 63.7 67.9 73.2 60.1 66.8 67.0
VAT [ECCV22] [33] 70.0 72.5 64.8 64.2 67.9 75.0 75.2 68.4 69.5 72.0

IPMT [NeurIPS22] [34] 71.6 73.5 58.0 61.2 66.1 75.3 76.9 59.6 65.1 69.2
DCAMA [ECCV22] [7] 65.4 71.4 63.2 58.3 64.6 70.7 73.7 66.8 61.9 68.3

QCLNet [TCSVT23] [30] 67.9 72.5 64.3 63.4 67.0 72.5 74.8 68.5 68.9 71.2
RPMG-FSS [TCSVT23] [31] 63.0 73.3 56.8 57.2 62.6 67.1 73.3 59.8 62.7 65.7

SCCAN [ICCV23] [49] 69.1 74.0 66.3 61.6 67.7 71.6 75.2 69.5 66.5 70.7
DRNet [TCSVT24] [37] 66.4 70.7 64.9 59.8 65.3 69.3 74.1 66.7 66.5 69.2

Proposal-based methods with ResNet-101
MMFormer† [NeurIPS22] [12] 70.2 74.6 64.6 61.8 67.8 74.6 76.2 64.8 66.6 70.6

PRFormer [Ours] 72.0 76.3 66.6 66.9 70.4 76.4 78.0 67.0 70.5 73.0

B. Implementation Details

We use ImageNet-pretrained ResNet-50 and ResNet-101 as
the backbone networks for feature extraction. The parameters
of the backbone are fixed to prevent overfitting and pro-
mote efficiency. Training data is augmented through random
horizontal flipping and cropping. The input image size is
480×480 for both PASCAL-5i and COCO-20i datasets. During
training, the batch size is set to 8, and we use the AdamW
optimizer [56] with an initial learning rate of 0.0001. The
weight decay is set to 0.05. We employ the poly learning rate
strategy, with a factor of 0.9 and a constant ending learning
rate of 0.00001. Following MMFormer [12], we implement
a two-stage training strategy. First, the proposal generator
is trained for 30,000 iterations on PASCAL-5i and 80,000
iterations on COCO-20i. Then, the entire network, with the
proposal generator frozen, is trained for 15,000 iterations on
PASCAL-5i and 30,000 iterations on COCO-20i. λ1 is set to
5.0 for the proposal generator in the 1st stage and deprecated
in the 2nd stage, while λ2, λ3, and λ4 are set to 10.0, 1.0,
and 20.0, respectively, for the matching process in the 2nd

stage and deprecated in the 1st stage. Note that both λ1 and

λ2 are set according to the settings in MMFormer [12]. For
K-shot segmentation, we averaged K support prototypes to
reduce intra-category differences. The update momentum α
for LcdNCE is set to 0.5. The number of proposals N is set
to 100, following the default setting of Mask2Former [9]. The
PRFormer is implemented and trained using PyTorch on the
NVIDIA RTX 2080Ti.

C. Comparison with State-of-the-Arts

We compare our PRFormer with State-of-the-Art (SOTA)
methods on PASCAL-5i and COCO-20i datasets, as summa-
rized in Tab. I and Tab. II.

a) PASCAL-5i.: Tab. I presents the 1-shot and 5-shot
performance on PASCAL-5i. Our PRFormer consistently out-
performs other approaches using both ResNet-50 and ResNet-
101 backbones. For 1-shot segmentation, PRFormer achieves
69.5% mIoU with ResNet-50 and 70.4% mIoU with ResNet-
101, surpassing previous methods by at least 0.8% and 2.5%,
respectively. For 5-shot segmentation, PRFormer maintains
competitive performance with 71.9% mIoU using ResNet-
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TABLE II
PERFORMANCE COMPARISONS WITH LATEST METHODS FOR 1-SHOT AND 5-SHOT SEGMENTATION ON COCO-20i IN MIOU. THE RESULTS IN BOLD
REFER TO THE BEST RESULT AMONG ALL THE METHODS. †: WE EVALUATE MMFORMER WITH RESNET-101 BASED ON ITS OPEN-SOURCED CODE.

Method 1 shot 5 shot
Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean

Pixel-level feature correlation methods with ResNet-50
PPNet [ECCV20] [43] 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5

PFENet [TPAMI20] [23] 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0
RePRI [CVPR21] [44] 32.0 38.7 32.7 33.1 34.1 39.3 45.4 39.7 41.8 41.6

CWT [CVPR21] [2] 32.2 36.0 31.6 31.6 32.9 40.1 43.8 39.0 42.4 41.3
ASGNet [CVPR21] [24] 34.9 36.9 34.3 32.1 34.6 41.0 48.3 40.1 40.5 42.5

HSNet [ICCV21] [6] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9
BAM [CVPR22] [39] 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

SSP [ECCV22] [46] 35.5 39.6 37.9 36.7 37.4 40.6 47.0 45.1 43.9 44.1
VAT [ECCV22] [33] 39.0 43.8 42.6 39.7 41.3 44.1 51.1 50.2 46.1 47.9

DPCN [CVPR22] [51] 42.0 47.0 43.2 39.7 43.0 46.0 54.9 50.8 47.4 49.8
IPMT [NeurIPS22] [34] 41.4 45.1 45.6 40.0 43.0 43.5 49.7 48.7 47.9 47.5

DCAMA [ECCV22] [7] 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3
QCLNet [TCSVT23] [30] 39.8 45.7 42.5 41.2 42.3 46.4 53.0 52.1 48.6 50.0
ABCNet [CVPR23] [48] 42.3 46.2 46.0 42.0 44.1 45.5 51.7 52.6 46.4 49.1
MIANet [CVPR23] [47] 42.5 53.0 47.8 47.4 47.7 45.8 58.2 51.3 51.9 51.7
SCCAN [ICCV23] [49] 39.5 49.3 47.3 44.3 45.1 45.7 56.4 56.5 50.7 52.3
DRNet [TCSVT24] [37] 42.1 42.8 42.7 41.3 42.2 47.7 51.7 47.0 49.3 49.0

Proposal-based methods with ResNet-50
MMFormer [NeurIPS22] [12] 40.5 47.7 45.2 43.3 44.2 44.0 52.4 47.4 50.0 48.4

PRFormer [Ours] 49.6 50.8 45.2 50.6 49.1 54.3 55.5 49.5 56.0 53.8
Pixel-level feature correlation methods with ResNet-101

PFENet [TPAMI20] [23] 36.8 41.8 38.7 36.7 38.5 40.4 46.8 43.2 40.5 42.7
CWT [CVPR21] [2] 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0

HSNet [ICCV21] [6] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5
NTRENet [CVPR22] [40] 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2

SSP [ECCV22] [46] 39.1 45.1 42.7 41.2 42.0 47.4 54.5 50.4 49.6 50.2
IPMT [NeurIPS22] [34] 40.5 45.7 44.8 39.3 42.6 45.1 50.3 49.3 46.8 47.9

QCLNet [TCSVT23] [30] 40.0 45.5 45.1 43.6 43.6 46.9 55.8 53.6 51.1 51.9
SCCAN [ICCV23] [49] 41.7 51.3 48.4 46.7 47.0 49.0 59.3 59.4 52.7 55.1
DRNet [TCSVT24] [37] 43.2 43.9 43.3 43.9 43.6 52.0 54.5 47.9 49.8 51.1

Proposal-based methods with ResNet-101
MMFormer† [NeurIPS22] [12] 45.8 45.1 44.5 44.9 45.1 49.5 52.9 46.2 52.8 50.3

PRFormer [Ours] 47.8 51.5 47.3 51.2 49.4 55.3 58.1 50.9 57.3 55.4

TABLE III
EFFICIENCY COMPARISON OF PRFORMER AND TWO REPRESENTATIVE PRIOR METHODS ON 1-SHOT PASCAL-5I WITH RESNET-50.

Methods HSNet NTRENet VAT BAM SCCAN MMFormer PRFormer
Infer time (ms/it) 734 129 534 106 130 165 99

50 and 73.0% mIoU with ResNet-101, demonstrating its
effectiveness across different backbones and few-shot settings.

b) COCO-20i.: The COCO-20i dataset is considerably
more challenging than PASCAL-5i, due to its four times of
categories and more than ten times of samples. Despite this,
PRFormer achieves 49.1% mIoU (1-shot) and 53.8% mIoU (5-
shot) with the ResNet-50 backbone, which is 1.4% (1-shot)
and 1.5% (5-shot) ahead of previous SOTA methods, respec-
tively. With the ResNet-101 backbone, PRFormer achieves
49.4% mIoU for 1-shot and 55.4% mIoU for 5-shot, contin-
uing to lead in performance. Notably, PRFormer outperforms
MMFormer by approximately 5% in both 1-shot and 5-shot
segmentation with ResNet-50, further unleashing the potential
of proposal-based methods. These results establish PRFormer
as the new SOTA in proposal-based FSS methods.

c) Efficiency comparison. : We evaluate the inference
time of various approaches using the ResNet-50 backbone
on the 1-shot task of PASCAL-5i. For a fair comparison,
efficiency experiments are conducted on a single NVIDIA
RTX 2080Ti with PyTorch v1.10.1. Tab. III shows that our
PRFormer demonstrates superior efficiency compared to pre-

vious advanced methods. Pixel-wise comparison methods [6],
[33] exhibit the lowest efficiency due to their extensive com-
putation on 4D correlations. Previous prototype comparison
methods [39], [40], [47], [49] are more efficient than the earlier
proposal-based method MMFormer [12], which still relies
on a few-to-many feature alignment process. Our PRFormer
achieves an inference time of 99ms per episode, highlighting
the effectiveness of few-to-few proposal-based methods in
terms of efficiency compared to other advanced approaches.

VI. ABLATION STUDIES

We conduct a series of ablation studies on the PASCAL-5i

dataset to evaluate the contribution of each proposed module
and loss in PRFormer. All experiments are performed under
1-shot settings using the ImageNet-pretrained ResNet-50.

A. Ablation Study on Component Integration

In this section, we evaluate the effectiveness of key compo-
nents in PRFormer, including the PrCC, PPI, WPR modules,
and the IoU-KLD loss LIoU−KLD. Tab IV summarizes the
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Fig. 4. Qualitative results of different module combinations on Pascal-5i and COCO-20i. The baseline represents direct prototype matching without adaptation.

TABLE IV
ABLATION STUDY ON COMPONENT INTEGRATION. LIoU−KLD REFERS
TO THE IoU-KLD LOSS WITH THE SIMILARITY VECTOR. NOTE THAT THE

PRCC MODULE IS GUIDED BY THE cdNCE LOSS.

PrCC PPI LIoU−KLD WPR mIoU (%)
✓ 66.6

✓ 65.9
✓ ✓ 67.9

✓ ✓ 67.5
✓ ✓ ✓ 68.5
✓ ✓ ✓ ✓ 69.5

results from various combinations of these modules and loss
functions. Each experiment consistently integrates LcdNCE

loss with the PrCC module. While maintaining an MLP
structure for similarity vectors, we avoid using both the PrCC
and PPI modules simultaneously. Isolated evaluations of the
PrCC and PPI modules yield mIoUs of 66.6% and 65.9%,
respectively, confirming their efficacy in selecting appropri-
ate mask proposals for accurate segmentation. Incorporating
LIoU−KLD increases mIoU by 1.3% for PrCC and 1.6% for
PPI, underscoring this loss’s role in refining similarity vectors
based on IoU values between proposal masks and ground truth.
The synergy of the PrCC and PPI modules elevates mIoU to
68.5%, outperforming their individual contributions by 0.6%
and 1.0%, respectively, highlighting the benefit of leveraging
their complementary strengths. To address inaccuracies in
proposal generation, we employ the WPR module, which re-
fines predictions using mid-level features and sorted weighted
proposals, achieving an additional 1.5% mIoU improvement.
We further assess the impact of different coefficient values for
LIoU−KLD. As shown in Tab. V, setting the coefficient λ4 to
20 maximizes the loss’s potential for precise optimization of
similarity vectors. Moreover, compared to the cross-alignment
loss Lco from MMFormer [12], which only selects the mask
proposals with maximum and minimum values in the similar-
ity vector for computing dice loss, our LIoU−KLD offers a

TABLE V
ABLATION STUDY ON THE COEFFICIENT OF LIoU−KLD .

λ4 mIoU (%) ∆
0 67.5 0.0

10 68.1 +0.6
20 68.5 +1.0
30 68.1 +0.6
50 68.1 +0.6

TABLE VI
ABLATION STUDY ON THE UTILIZATION OF LIoU−KLD ON THE

SIMILARITY VECTOR.

Losses Selection mIoU (%)
LIoU−KLD 68.5

Lco 67.7

0.8% improvement according to Tab. VI.
The qualitative analysis of different module combinations is

presented in Fig. 4. The baseline method, matching prototypes
without adaptation, is depicted in the 1st row of Tab. VII.
Methods from the 3rd to 5th rows correspond to those in
Tab. IV. Typically, PrCC-only and PPI-only methods out-
perform the baseline, particularly in object localization and
coverage enhancement. The PrCC module excels with objects
having minimal internal diversity, such as the bottle in the
2nd column and the chair in the 7th column, while the PPI
module is better suited for objects with significant internal
diversity, such as the train in the 3rd column, the dog in the
4th column, and the sheep in the last column. The qualitative
assessment underscores the distinct advantages of the PrCC
and PPI modules: PrCC compresses spatial information into
vectors, reducing internal diversity, whereas PPI retains in-
ternal diversity through mask prompts but lacks channels for
precise global information. By combining these two modules,
we integrate their strengths, enhancing predictions in more
complex scenarios and illustrating the efficiency and effec-
tiveness of their integration in a few-to-few-matching manner.
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TABLE VII
ABLATION STUDY ON THE ADAPTATION SCHEME IN THE LOCAL

ADAPTATION AND INTER-LEVEL ADAPTATION.

Adaptation scheme mIoU (%)
None 43.4

Linear layer 65.1
MLP 66.6

MLP w. Residual 65.9

TABLE VIII
ABLATION STUDY ON THE PRCC MODULE. PR4 REFERS TO THE METHOD

USING PROTOTYPES FROM THE 4TH-LEVEL BACKBONE FEATURES. PRv̂
AND PRṽ DENOTE METHODS WITH SOLELY LOCAL AND INTER ADAPTED
PROTOTYPES IN PRCC, RESPECTIVELY. THE 5th ROW, WHICH COMBINES
PRv̂ AND PRṽ , DEMONSTRATES THE METHOD WITH PRCC THAT UNIFIES

PROTOTYPES ACROSS BOTH OF THEM. LcdNCE MEANS THE USE OF
cdNCE LOSS IN THE ADAPTATION PROCESS.

Pr4 Prv̂ Prṽ LcdNCE mIoU(%) ∆
✓ 57.0 0.0
✓ ✓ 62.8 +5.8

✓ ✓ 64.9 +7.9
✓ ✓ 65.5 +8.5

✓ ✓ ✓ 66.6 +9.6

B. Effectiveness of PrCC Module

The PrCC module matches proposals by adapting various
prototypes guided by LcdNCE . We define the baseline as the
method that matches prototypes directly obtained from the
features F ◦

4 of the last block of the ResNet backbone, as fine-
grained features offer greater inter-category distinctiveness.
Note that the baseline method includes an MLP for prototype
adaptation. Building on this baseline, we introduce different
PrCC designs using prototypes from the proposal generator
and the cdNCE loss LcdNCE . The experiment results are
shown in Tab. VIII. The baseline method, denoted as Pr4,
achieves a mIoU of 57.0%. Incorporating LcdNCE with the
adaptation module yields a 4.5% improvement, demonstrating
the effectiveness of LcdNCE in promoting category distinctive-
ness and preventing overfitting. Unlike previous FSS pipelines,
which rely on few-to-many prototype comparisons and many-
to-many pixel-wise comparisons, we utilize features from the
Proposal Generator in the second stage to derive prototypes
with finer global information. This approach is more efficient,
using features with 256 channels compared to the 2048 chan-
nels of F ◦

4 . We explore two adaptation methods to optimally
utilize these prototypes: local adaptation as Prv̂ and inter-level
adaptation as Prṽ . Comparing the experimental results in the
third and fourth rows of Tab. VIII with those in the second
row, our two adaptation methods yield performance gains of
2.1% and 2.7%, respectively, indicating that the prototypes
from the proposal generator are more suitable for the matching
process. Moreover, we enhance the benefits of both methods
by combining the two adapted prototypes (v̂ and ṽ) through
a linear layer, achieving a remarkable mIoU of 66.6%.

To further demonstrate the reliability of the prototype selec-
tion and adaptation method, we visualize the compactness of
each category in COCO-20i, as shown in Fig. 5. For each
category, we use average variance to measure the internal
differences of prototypes. Note that the average variance is
calculated on the prototypes of categories from their corre-
sponding test folds, meaning these unseen categories are not
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Fig. 5. The visualization of intra-category compactness via average variance
of the categories in COCO-20i. Note that the variance is calculated on the
prototypes of categories from their corresponding test folds.

TABLE IX
ABLATION STUDY ON THE COEFFICIENT OF LcdNCE .

λ3 mIoU (%) ∆
0 64.3 0.0

0.5 65.8 +1.5
1 66.6 +2.3
2 65.9 +1.6
5 64.9 +0.6

10 55.3 -9.0

TABLE X
ABLATION STUDY ON THE MOMENTUM FACTOR α FOR UPDATING THE

BUFFER IN THE PRCC MODULE.

α 0.2 0.4 0.5 0.6 0.8
mIoU 65.1 65.8 66.6 66.3 66.1

specifically trained for evaluation. The prototypes Pr4 from
the backbone exhibit significantly greater variance compared
to Prυ , which is extracted from the proposal generator. Our
adaptation strategy effectively enhances the compactness of
prototypes from the same category, demonstrating that the
adaptation positively impacts unseen classes instead of over-
fitting seen classes.

To analyze the necessity of the current adaptation scheme
in the local and inter-level adaptation of the PrCC module,
we conduct the ablation study on several adaptation schemes,
as shown in Tab. VII. Without any external adaptation, the
proposal selection result from the matching process with the
original prototypes reaches only a mIoU of 43.4%. A simple
linear layer for prototype adaptation enhances the effectiveness
of prototype matching, achieving a mIoU of 65.1%, demon-
strating the necessity of further adaptation on the prototypes.
The MLP layer improves the performance of the PrCC module
to a mIoU of 66.6%, as the multi-layer structure enables more
precise adaptation. Besides, we evaluate the additional residual
operation on the MLP, yet the performance is 0.8% lower than
not using residual operation.

Furthermore, we analyze the influence of different hyper-
parameter values involved in the PrCC module, including
the coefficient λ4 of LcdNCE and the momentum factor α
for updating the buffer prototypes. The experimental results
of hyperparameter λ4 are shown in Tab. IX. While setting
λ4 to 1, the PrCC-only method achieves the highest mIoU
with 2.3% of promotion compared to not using LcdNCE .
However, higher values of λ4 result in a negative effect on
maintaining the semantic distinctiveness of unseen categories.
The experiment results in Tab. X show that LcdNCE has
the best performance when α is set to 0.5, demonstrating
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TABLE XI
ABLATION STUDY ON VARIOUS PROPOSAL SELECTION IN WPR.

Proposal Refinement mIoU (%) ∆
None 68.5 0.0

Proposals 68.2 -0.3
Weighted Proposals 68.7 +0.2

Sorted Weighted Proposals 69.1 +0.6
Top 10 & Bottom 10 Proposals 69.5 +1.0

(a) The results on Pascal-5i with different Top-k or Top-
k & Bottom-k settings.

(b) The results on COCO-20i with different Top-k or
Top-k & Bottom-k settings.

Fig. 6. Ablation study on Top-k vs. Top-k & Bottom-k weighted proposals
with ResNet-50 backbone. Both (a) and (b) demonstrate the effectiveness
of selecting Top-10 & Bottom-10 weighted proposals for generating the
prediction mask.

that a moderate momentum factor is suitable for maintaining
representative buffer prototypes.

C. Effectiveness of WPR Module

The WPR module refines proposal-based predictions for
precise segmentation, addressing the issue that the proposal
generator, trained on the training set, often generates inferior
quality proposals for novel classes. The WPR module requires
these proposals to guide the refinement process. However, the
original mask proposals lack a clear sequence, with similar
proposals randomly positioned. This disorder significantly
disrupts the refinement process because proposals in the same
channel can have reverse contributions for different query
samples. Experiment results, shown in Tab. XI, indicate that
disordered proposals negatively impact the mIoU by −0.3%
compared to the method without WPR, demonstrating that
unprocessed original proposals can hinder refinement. To ad-
dress this, we introduce a weighting process on the proposals,
giving more influence to those similar to the initial prediction.
By multiplying the similarity vector s with the corresponding
mask proposal, PRFormer’s performance marginally improves
to a mIoU of 68.7%, which is 0.2% better than the method
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  Fig. 7. The visualization of the Top-5 & Bottom-5 mask proposals.

without WPR. Additionally, to address the random order of
mask proposals, we sort them based on their corresponding
value in the similarity vector s. This sorting ensures an explicit
sequence and stable significance at specific positions. As a
result, a substantial 0.6% improvement in mIoU is observed
through sorting the weighted proposals.

Although the previous processing of proposals enhances the
effectiveness of the WPR module, there is still redundancy in
proposal usage. Typically, the most similar samples are repo-
sitioned to the front, while the least similar ones are moved
to the back, providing clear positive or negative guidance.
However, proposals with unclear similarities accumulate in the
middle positions. Due to the randomness of proposal genera-
tion and matching errors, positive, negative, and ambiguous
proposals can coexist in this mid-range, complicating the
learning process for proposal contributions. We are considering
removing a specific range of proposals to address this issue and
improve efficiency. We experimented with the WPR module
using top-k, top-k & bottom-k proposals. Fig. 6a and Fig. 6b
illustrate the overall performance as the value of k changes
along the horizontal axis, comparing the methods using only
top-k proposals versus both top-k & bottom-k proposals.
Among the evaluated methods, using both top-10 & bottom-10
proposals, as implemented in PRFormer, achieved the highest
mIoU of 69.5%. The top-k selection performs best when k
is set to 20, trailing the top-10 & bottom-10 method by only
0.2% in mIoU. By selecting the top 10 and bottom 10 propos-
als, PRFormer gains an additional 0.4% mIoU improvement
while eliminating redundancy. Furthermore, we visualize the
top 5 and bottom 5 mask proposals in Fig. 7. The most similar
mask proposals highlight the potential region of the target
object, while the least similar ones depict background objects.

D. Qualitative Results

To highlight the effectiveness of PRFormer, we have visu-
alized the segmentation outcomes in Fig. 8. The first three
columns illustrate the significant improvements achieved by
our proposed PRFormer and the WPR module compared to
MMFormer. The 4th to 6th columns demonstrate that even
without the WPR module, PRFormer exhibits superior per-
formance over MMFormer. The last two rows reveal that the
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  Fig. 8. Qualitative result of MMFormer, PRFormer without WPR and
PRFormer on Pascal-5i and COCO-20i.

subsequent incorporation of the WPR module further refines
details, leading to more accurate predictions.

VII. CONCLUSION

In this work, we proposed Prototype and Mask Matching
transFormer (PRFormer) with several components, to enhance
the performance of two-stage proposal-based methods for
Few-shot Semantic Segmentation. The PrCC module, accom-
panied by the cdNCE loss, adjusted feature prototypes for re-
liable semantic similarity assessment. The parameter-free PPI
module efficiently and effectively enhanced spatial similarity
assessment regarding spatial overlap, while the IoU-KLD loss
sufficiently supervised the similarity value corresponding to
each proposal. Moreover, the WPR module refined predictions
using weighted proposals and middle-level features. Overall,
the experimental results demonstrate that PRFormer achieves
state-of-the-art performance among other methods. One limi-
tation is that the proposals do not precisely fit the regions of
novel categories, which may be a direction for future research.
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