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Artiticial neural networks have changed the questions we can ask about the visual system

“A first point of agreement is that an adequate model of visual responses should predict responses to

arbitrary stimuli, not only those encountered in the laboratory but also those seen in nature. Surprisingly, many
of the standard models of early visual processing have not been held to this rigorous test.” (2005)
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Yamins et al. (2014); Yamins & DiCarlo (2016); “Do we know what the early visual system does?”: Carandini et al. (2005)



Artiticial neural networks have changed the questions we can ask about the visual system
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Artiticial neural networks have changed the questions we can ask about the visual system

| saw that dog

at the park

hat's a dog How can ANNs help cognitive

yesterday neuroscientists?

-
O

1. Providing quantitative "knobs” to

turn in studying cognition.

2. Benchmarks to identity
contributions of brain processes to
behavior.




Visual recognition memory offers a window into our visual and memory systems

Brady et al. (2008)
Standing (1973) Images courtesy of Barnes Jannuzi



Visual memory is typically studied in random contexts

Presenting these sequences assumes that every image has an equal
probability of appearing, but we know that’s not true of the real world.

T —r

Behavior: Potter & Levy, 1969; Standing, 1973; Brady et al., 2008; Isola et al., 2011
Neural: Bainbridge et al., 2017; Meyer & Rust, 2018; Bainbridge & Rissman, 2018; Mehrpour & Rust, 2021
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The statistics of image sequences

impact visual memory

lllustration of results from Bylinskii et al., 2015



The statistics of image sequences impact visual memory

What are the neural correlates of contextual influences on
visual memory?




The blocked memory task manipulates temporal context

Random Block

Categorical Oddball Oddball Categorical
(Novel) (Novel) (Repeated) (Repeated)

Adapted from Meyer & Rust, 2018
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Computing block similarity
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Computing block similarity

similar

different

CORnet: Kubilius* & Schrimpf* et al., 2018



Computing block similarity
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Computing block similarity
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N=40 sessions
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Block similarity predicts the monkey's memory

What are the neural correlates of contextual influences
on visual memory?
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Neural recording during memory behavior allows direct comparison of neural signals to behavior
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Neural recording during memory behavior allows direct comparison of neural signals to behavior
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IT: Meyer & Rust, 2018; Mehrpour et al., 2021



Neural recording during memory behavior allows direct comparison of neural signals to behavior

neuron 2

repetition
.« . suppression
Is ITC sufficient to account for contextual

effects on visual memory, or is the medial
temporal lobe (HC) also engaged in
important computations?

h———* _

IT: Meyer & Rust, 2018; Mehrpour et al., 2021



Repetition suppression in ITC but not HC predicts memory as a function of block similarity
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Repetition suppression in ITC but not HC predicts memory as a function of block similarity

Visual memory representations as early as ITC capture
contextual effects on visual memory.




Neural recording during memory behavior allows direct comparison of neural signals to behavior

repetition
.« . suppression
Is ITC sufficient to account for contextual

effects on visual memory, or is the medial
temporal lobe (HC) also transforming
visual memory representations?

h—-——-—¥ —

IT: Meyer & Rust, 2018; Mehrpour et al., 2021



The hippocampal pattern separation (HPS) hypothesis
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Yassa & Stark, 2011



The adaptation-induced cortical pattern separation (aCPS) hypothesis
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Barlow & Foldiak, 1989; Benucci et al., 2013; Gutnisky & Dragoi, 2008



Probability

CORnet is a good approximation of neural distances for random images in IT
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Probability
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There is evidence of aCPS for categorical images
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Probability
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The brain dynamically modulates visual representations in ways not captured by static ANNs

Random Block Categorical Block

- of M8
HCAl He I W

2 0.04 IT 0 04 ! 1
IS I !
'cé | IT |
T oo e |
| | CORnet 002 W%

0 005 01 015 02 025 03 035 0 005 01 015 02 025 03 035
Block Similarity Block Similarity



Key Takeaways

Context matters!

We can predict image-specific changes in a monkey’s visual memory performance
(ANNs = “knob” we can turn on context)

Don’t underestimate the role of cortex when it comes to visual recognition memory.

Cortical representations are modulated by adaptive brain mechanisms that are not
captured by state of the art ANNSs.
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